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Chapter 1

Introduction

1.1 Cyclostratigraphic data

Increasingly, quantitative records of environmental change covering intervals of be-
tween half a day to millions of years are being sought by palaeoceanographers, en-
vironmental scientists, palaeoclimatologists, sedimentologists and palaeontologists.
The ‘media’ from which these records are obtained range from sediments and sedi-
mentary rocks to living organisms and fossils showing growth bands (especially trees,
corals and molluscs), ice cores and cave calcite. This book is concerned with explain-
ing the quantitative methods that can be employed to derive useful information from
these records. Much of the discussion is concerned with explaining the problems and
limitations of the procedures and with exploring some of the difficulties with interpre-
tation. Most frequently environmental records are obtained from sedimentary sections
making up the stratigraphic record and, using a rather broad definition, all the ‘media’
described above are ‘stratigraphic’. The nature of cycles in environmental signals and
in stratigraphic records are explored later. However, for now cycles can be thought of
as essentially periodic, or regular, oscillations in some variable. The study of strati-
graphic records of environmental cycles has been called cyclostratigraphy (Fischer
et al, 1990).

By regarding stratigraphic records of environmental change as signals, itis clear that
the methods and interpretations reached during analysis must allow for the imperfec-
tions inherentin all recording procedures. In cyclostratigraphic data the environmental
signal, which is ‘encoded’ during sedimentation, is often corrupted to some extent by
interruptions caused by processes that are not part of the normal depositional system.
Such processes, for sediments, include non-deposition, erosion, seafloor dissolution or
event-bed deposition and they make the later recognition of the normal environmental
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signal more difficult. Yet the interruptions convey information themselves, and in
some cases they result from the extremes of the normal environmental variations. For
example, Dunbaet al. (1994), in their study of corals, pointed out that growth band
thickness was related to sea surface temperature. However, episodes of unusually high
sea surface temperatures cause growth band generation to stop completely for several
years, thus interrupting the proxy temperature record.

As well as interruptions, the recording processes can introduce distortions that
need to be taken into account. For example, accumulation rate variations and diage-
nesis frequently modify the final shapes of cyclostratigraphic data sets. In a similar
manner to the interruptions, the distorting processes often depend on the nature of
the environment. Hence, cyclostratigraphic data contain information about normal
environmental variability, abnormal environmental variations and the processes that
produce the records themselves. In other words, the stratigraphic information that is
observed can be regarded as the product of many superimposed environmental and
sedimentological, or metabolic, processes.

The methods described in this book are primarily concerned with detecting and de-
scribing regular cyclic environmental processes. Hence, the data are treated as though
they consist of regular cycles plus irregular oscillations. The irregular components
result from both normal and abnormal environmental conditions as well as the effects
of sedimentation and diagenesis (or equivalent processes in skeletal growth, etc.). As
explained below, there are sound geological reasons for using mathematics to search
for regular cycles. Regular components of cyclostratigraphic data are often studied
more easily than the irregular components. If methods could be developed to distin-
guish the various types and origins of the irregular components, much of value could
be uncovered. Quantitative studies of the interruption and distortion processes will
undoubtedly be useful for understanding ancient environmental and diagenetic mech-
anisms, but such investigations are relatively rare (e.g. Sadler, 1981; Ricken, 1986;
Ricken and Eder, 1991; Ricken, 1993).

The idea that stratigraphic data consist of regular components — the signal, plus
irregular components or noise — is based on a linear view of the processes involved.
In reality non-linear processes abound in environmental systems (e.g. Le Treut and
Ghil, 1983; Imbrieet al,, 1993a; Smith, 1994). In non-linear systems, the output does
not vary in direct proportion to the input. There are many aspects of cyclostratigraphic
data that cannot be easily investigated using the standard linear methods of analysis
described in this book. From the perspective of non-linear dynamical systems, part of
the irregular components can be considered to be as much a part of the environmental
signal as the regular components (Stewart, 1990; Kantz and Schreiber, 1997). Some
non-linear methods are described very briefly within Chapter 4 and some non-linear
issues in signal distortion are considered in Chapter 5. Despite the view that non-
linear approaches might explain more of the data than the linear methods, the latter
are currently best understood mathematically and are the most frequently used.

A good demonstration of the success of the standard linear approach to cyclostrati-
graphic data concerns the time scale developed using late Neogene deep-sea sediments.
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Hilgen (Hilgen and Langereis, 1989; Hilgen, 1991) and Shackletah (1990) inde-
pendently derived orbital cycle chronologies based on matching sedimentary cycles
and oxygen isotope curves to the calculated history of insolation changes (Section 6.9).
The results were at odds with the widely accepted radiometric ages that had been ob-
tained using potassium-argon dating. Subsequently, improved radiometric dating and
studies of sea-floor spreading rates confirmed the validity and utility of the so-called
astronomical time scale approach (Wilson, 1993; Shackletal., 1995a, 1999a).
Consequently, a recent geochronometric scale for part of the Neogene has been based
directly on orbital-cycle chronology rather than the traditional data derived from radio-
metrically calibrated rates of sea-floor spreading (Bergetead.,, 1995). In this case

the standard, linear methods of time-series analysis have yielded results of fundamental
importance to many other areas of the Earth Sciences.

1.2 Past studies of cyclic sediments

Examination of cyclic sediments intensified in the 1960s as modern depositional envi-
ronments were better understood and conceptual models became more sophisticated.
Historically sedimentologists were looking for explanations for cyclic stratigraphic se-
guences that did not simply requir@dom (i.e. unconnected, meaning uncorrelated

or ‘independent’) events. Perhaps if the underlying controls could be uncovered, more
could be learnt about the environment of deposition. Cycle-generating processes were
described as autocyclic if they originated inside the basin of deposition. Alternatively,
allocyclic processes originated outside the basin (Beerbower, 1964). Coal measure
cyclothems were a particular target for investigation since they had a wide range of
interbedded lithologies, and resulted from a range of suspected autocyclic and allo-
cyclic mechanisms. The definition of a cyclothem (Wanless and Weller, 1932) soon
became contentious once the variety of lithological successions and inferred origins
was appreciated (Duft al, 1967; Riegel, 1991). Simpler cyclic sections involving

two alternating lithologies, often described as rhythmic, were often mentioned in re-
views of cyclic sedimentation but, aside from sequences that were inferred to contain
varves, they were little studied (e.g. Anderson and Koopmans, 1963; Schwarzacher,
1964).

In many early investigations, pattern recognition was centred on the analysis of the
observed sequences of lithologies. This made sedimentological sense as the predic-
tions of qualitative models could be compared with the observations. Of course no
reasonably long stratigraphic section actually corresponded exactly to the pattern pre-
dicted by the models. Unfortunately, since it was easy to imagine situations where the
expected or ‘ideal cycle’ (Pearn, 1964) was not encoded in the sedimentary rocks, it
proved impossible to falsify the models. Duff and Walton (1962) argued that sedimen-
tary cycles can be recognized as having a particular order of lithologies that frequently
occur in a particular sequence. They called the most frequently occurring sequence a
modal cycle. However, their definition of cyclicity was criticized as being so vague
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that it could include sequences that are indistinguishable from the result of random
fluctuations — which would also exhibit modal cycles (Schwarzacher, 1975).

Markov chain analysis was used to test sequences for the presencevariov
property or the dependence of successive observations (lithologies or numbers) on
previous observations. This captured some of the concept of a ‘pattern’ in a cyclic se-
quence since it implied a certain preferred order to the observed lithologies. However,
stratigraphic data as structured for Markov analysis apparently always have preferred
lithological transitions, and thus never correspond to a truly independent random se-
quence (Schwarzacher, 1975). This is because environmental systems include a degree
of ‘inertia’. Even instantaneous changes in the ‘boundary conditions’ (e.g. sea level,
rainfall, etc.) do not cause instantaneous changes in the environment. For example, it
can be as much as a few years before the release, over a few weeks or months, of alarge
volume of sulphate aerosols into the atmosphere by a volcanic eruption causes a drop
in global atmospheric temperatures (Stuieeml,, 1995). Therefore, the ubiquitous
detection of a Markov property in cyclic sections merely indicated that there is a degree
of ‘smoothness’ in the transitions between successive observations. Since virtually all
physical systems exhibit inertia, the detection of a Markov property proved to be of
little use for characterizing sedimentary cyclicity. Nevertheless, Markov analysis is
useful when, for example, the particular order of lithologies helps in the description
of sedimentological processes (e.g. Wilkingdral,, 1997).

Schwarzacher’s (1975) book represented a landmark in the examination of sedi-
mentary cyclicity. Instead of just examining the transitions between lithologies at bed
boundaries in Markov chain analysis, he reasoned that the thickness of successive beds
provided information of fundamental importance in the assessment of sedimentary cy-
cles. This meant that the stratigraphic data should be collectéchaseries Time
series include any sequence of measurements or observations collected in a particu-
lar order. Usually the measurements are made at constant intervals of some scale of
measurement such as cumulative rock thickness, geographic distance, time, growth
band number, etc. Some authors have referred to data collected relative to a depth
or thickness scale as ‘depth series’, but time series is actually the correct mathemat-
ical term for historical reasons (Schwarzacher, 1975; Priestley, 1981; Schwarzacher,
1993). The variable that is recorded need not be restricted to lithology of course, and
this significantly widens the scope of potential investigations of sedimentary cyclicity.
The quantitative techniques used for the study of such data are described as methods
of time-series analysis

Schwarzacher argued that to be meaningful the term ‘sedimentary cycles’ must
refer to oscillations having perfectly or nearly perfectly consteatelength Only if
the wavelength can be measured in time does one refer to the gyetadsl. However,
whether a time or thickness scale is being used, oscillations of constant wavelength
are described by mathematiciangasiodic, and those of nearly constant wavelength
asquasi-periodic. Periodic or quasi-periodic cyclostratigraphic sections have repeti-
tions of a particular observation (such as a particular rock type) at essentially constant
stratigraphic intervals. To many mathematicians stratigraphic sections that do not
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exhibit this type of regularity should not be termed cyclic at all (Schwarzacher, 1975).
Yet sedimentary cyclicity is a perfectly useful field term for sections with interbed-
ded rock types where event deposition is not involved (Einstlal, 1991). The
mathematician’s approach would require mathematical investigations before the term
sedimentary cyclicity could be applied. | argue here that ‘cyclicity’ and ‘sedimentary
cycles’ are liable to be used by sedimentologists, however vaguely, for the foresee-
able future. Instead | have used the temagular cyclesandregular cyclicity to
denote oscillations in stratigraphic records that can be shown, using time-series anal-
ysis, to have near-constant wavelengths (i.e. rock thickness) or periods. The issue of
nomenclature of cyclic sediments is currently being assessed by the Working Group
on Cyclostratigraphy appointed by the International Subcommission on Stratigraphic
Classification (Hilgeret al.,, 2001).

Inthe late 1970s and 1980s two revolutions in sedimentological thinking profoundly
influenced the study of cyclic sediments. Firstly, following extensive deep-sea drilling,
improvements in the measurement of remnant magnetization and in radiometric dat-
ing, it became clear that the orbital or Milankovitch Theory of climatic change (Section
6.9) should be taken seriously as an explanation for the Pleistocene climate changes
(Hayset al,, 1976; Imbrie and Imbrie, 1979; Imbrig al, 1984). This promoted in-
tense interest in evidence for pre-Pleistocene orbital-climatic cycles (Sections 6.9.3
and 6.9.4). In the absence of accurate time scales, the most convincing demonstra-
tions of ancient orbital-climatic cycles came from the time-series analysis methods
advocated by Schwarzacher (1975) and used extensively by the palaeoceanographers
examining Pleistocene sediments (Weedon, 1993). Pioneering time-series analyses
of cyclic sequences (Preston and Henderson, 1964; Schwarzacher, 1964; Carrs and
Neidell, 1966; Dunn, 1974) seem to have lacked the long data sets and time control
needed to make sufficiently convincing cases for Milankovitch cyclicity to the wider
community. Concurrent with the increased interest in Milankovitch cyclicity, the at-
tempt to detect regular climatic and weather cycles possessing much shorter periods
met with increasing success (Burroughs, 1992).

Meanwhile Vailet al. (1977, 1991) changed the way sedimentologists interpreted
lithostratigraphic successions. By employing sequence stratigraphic methods, sedi-
mentary sections can be divided into genetically related stratigraphic units. Stacks of
sequences were explained in terms of changing base level, especially relative sea level.
However, because a large variety of processes were believed to be ultimately responsi-
ble for sequence generation, a classification scheme based on the duration of sea level
cycles was adopted (e.g. Vait al, 1991). This ranged from ‘first order’ sequences
lasting more than 50 million years to ‘sixth order’ sequences formed in 10,000 to
30,000 years. Although the duration or ‘order’ of sequences was believed to provide
a clue to their likely origin, regularity was not implied by their use of the term ‘sea
level cycle’. Nevertheless, the higher order sea level cycles were explained in terms
of Milankovitch cycles, especially acting through glacio-eustasy (Goldharetrags
1990; Naish and Kamp, 1997). The resulting sequences were termed parasequences if
relatively complete, or simple sequences if bounded by stratigraphic gaps.
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By the 1990s a more descriptive approach to cyclic sequences was being advocated
(Einseleet al, 1991). Studies of the links between ancient climatic changes and
cyclic sedimentation increased, utilizing several Pleistocene models that include and
exclude ice sheets and glacio-eustasy. The description and study of cyclic sedimentary
sections became known as cyclostratigraphy (Fiseteal, 1990). As discussed
earlier, it is likely that future studies of irregular processes, particularly utilizing non-
linear dynamic systems methods (Sections 4.7 and 4.8), will be fruitful. Studies of
Milankovitch cyclicity are currently particularly concerned with the development of
time scales based on counts of Milankovitch cycles for pre-Cenozoic sequences and
matches with orbital ‘templates’ for the younger part of the Cenozoic (Section 6.9.3,
Shackletoret al, 1999a). However, a great deal of work on cyclostratigraphic signals
is now being undertaken by palaeoceanographers, climatologists and environmental
scientists concerned with climatic oscillations that have periods shorter than the orbital
cycles (i.e. <20,000 years) as discussed in Chdpter

1.3 Time-series analysis — an introduction

As shown in Fig. 1.1 a simple oscillation can be described in terms afiditude

and wavelength. Additionally, the position within the oscillation orghase angle

or phase(ranging from 0 to 3600r from O to 2Zr radians) can be measured from
some sort of origin along the time or cumulative thickness/depth axis. Geologically
the position of the origin is determined arbitrarily by wherever the data collection
started. However, mathematically this type of simple oscillation is usually described
using a sinusoid,; if it starts at the mid-point of an oscillation it is a sine wave and

if it starts at a maximum it is a cosine wave (Fig. 1.1). Sine and cosine waves are
convenient for describing oscillations mathematically. To produce a sinusoid that starts
at a phase angle of 4% is only necessary to add together a sine and cosine wave of
the same wavelength and the same amplitude (Fig. 1.2a). Any other starting angle can
be generated by controlling the relative amplitudes of the sine and cosine waves used
(Fig. 1.2b). Observational time series rarely have oscillations of such a simple shape,
but more complicated shapes, such as cuspate waves with narrow troughs and long
peaks, can be represented by adding sine and cosine waves with particular wavelengths
(Section 5.2.4).

Observational time series are of course usually composed of many different wave-
length oscillations. According tBourier’s theorem, any time series, no matter what
shape it is provided it has some oscillations and no infinite values, can be recreated
by adding together regular sine and cosine waves having the correct wavelengths and
amplitudes. Sine and cosine waves form a set of so-catiégonal functions. Or-
thogonal functions are simply groups of waves that can be added together to describe
any time series, but none of the individual component waves can be constructed from
combinations of other waves in the group. There are other sets of orthogonal functions,
which can be used in place of sines and cosines {éadsh functions, Section 3.4.6,
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Sine wave Phase Cosine wave Phase
10 1 angle 10 1 angle
360°/0° A 360°/0°

0 Wave height
g 270° 3 270°
~ =
g &
= : .
= 180 < 180°
& | 3
2 | =
I \
n \

L 90° 90°

Amplitude
0° v 0°

Fig. 1.1 The principal parameters needed to describe sinusoidal waves. Amplitude is
measured as the maximum deviation from the zero line. Period (time interval) or wave-
length (thickness interval) is defined as the interval from peak to peak or trough to
trough, etc. The phase angle indicates the relative position within the complete cycle
and is measured from the base of the data set. The phase angle, or more simply phase,
ranges from O to 360 degrees (or O to adians). Sine and cosine waves of the same
wavelength are identical except that the phase differs by®&e sine and cosine waves
shown have a wavelength or period equal to the length of the whole time series.

Many cyclostratigraphic records from cores are labelled using depth or age from
the top of the data downwards. However, it is standard lithostratigraphic practice, when
studying sections exposed on land, to denote stratigraphic position by height or time
increasing from the base upwards. Throughout this book the measurements or observa-
tions from the youngest strata are always located at the top of the time series plots (i.e.
the top measurements relate to minimum depth or maximum height).

Beauchamp, 1984). However, most stratigraphic time series consist of approximately
sinusoidal oscillations, so usually sine and cosine waves are the most naturally em-
ployed. Examination of time series using sines and cosines is often referred to as
Fourier analysis.

Clearly it would be convenient to be able to take a time series and quickly assess
how many regular component oscillations are present. This is most readily achieved by
usingpower-spectral analysigChapter 3). Put simply theower spectrumshows the
relative amplitudes (strictly squared amplitudes) and wavelengths or periods of all the
regular components in the time series. By convention the horizontal axis of a power
spectrum is plotted aequency (frequency= 1/period) with highest frequencies
(shortest oscillations) appearing on the right. Zero frequency refers to oscillations that
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Introduction

Fig. 1.2 (a) When sine and
cosine waves with the same
wavelength and equal
amplitude are added
together, the resulting
sinusoid has a phase which
is intermediate between that
of the components (i.e. it
differs by 45). (b) Adding a
sine wave with an amplitude
of one unit to a cosine wave
with an amplitude of half a
unit produces a sinusoid
with a phase of 675 This
means that any sinusoid can
be considered to represent
the sum of one sine and one
cosine wave having the
same wavelength and the
correct relative amplitudes.
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have wavelengths or periods exceeding the length of the whole data set. If the data are
collected as a function of time, frequency is measured in ‘numbers of cycles per time
unit’ which is usually shortened to ‘cycles per time unit’ (e.g. cycles per thousand
years). If a thickness or depth scale is used then instead of frequency some authors
refer to thewave number(i.e. wave numbes= 1/wavelength in thickness). However,

for clarity in cyclostratigraphic studies it is usual for one to speak of frequency even
though the units do not include a time element (e.g. cycles per metre).

Spectral analysis requires amplitude measurements determined as positive or neg-
ative deviations from some zero line. However, although the zero line is sometimes
defined using the average or mean of the data, usually a more complicated defini-
tion is involved as discussed later (Section 3.2). Consequently, it is often confusing,
when inspecting a time series plot, if the zero line is indicated, so this has only been
illustrated for the time series in Figs. 1.1 and 1.2. Geologists often prefer to plot
stratigraphic position or time running verticalyp the page. However, frequently
palaeoceanographers and environmental scientists plot data relative to time so that the
time axis runs horizontally, with younger data on the left of the page. To simplify
the layout of the figures | have plotted all the time series the same way so that either
stratigraphic position or time runs up the page, hence the youngest data are found at
the top.

The vertical axis of the spectrum is usually plotted as squared amplitude and by
analogy with physics it is described as ‘power’ (energy per time interval), hence the
name power spectrum. Since amplitude refers to deviation from the zero line, squared
amplitude can be thought of as squared deviation and so sometimes one speaks of
the variance spectrum (variance equals squared standard deviation). Occasionally
amplitude, rather than squared amplitude, is plotted against frequency, so creating an
amplitude spectrum (also known as anagnitude spectrum. If small spectral peaks
need to be studied together with large peaks then the log of power is plotted against
frequency. In electronic signal processing, for comparing power valuegeitibel
scaleis used (i.e. 1& log;gpower) so that a power value of 0.01 equa0 dB. (Note
that for comparing voltages, analogous to amplitude in time-series analysis, decibels
are calculated as 20 log;gvoltage/amplitude.)

It is sometimes useful to be able to think of spectral analysis using physical analo-
gies. Thus the rainbow effect produced by a glass prism acting on a beam of white light
is a classical example of a spectrum. The brightness of different parts of the rainbow
corresponds to the power and the various colours the frequency. The ear and brain
similarly apparently analyse sound (fluctuating air pressure) as though it is a time se-
ries made up of components with different amplitude/power (loudness) and frequency
(pitch, Taylor, 1965, 1976). Thus different parts of the brain are activated by different
frequencies, though the size of the response depends on musical training/skill and the
type of sound (e.g. Pantet al., 1998).

Figure 1.3 illustrates an example where a 10 m sine wave has been addedtoa2.78 m
sine wave. The resulting time series, shown as ‘Sum’ on the right, would have looked
different if the relative phase of the two components and/or the relative amplitudes
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Fig. 1.3 Adding sinusoids
with different wavelengths
produces a time series with
| ] ] multiple frequency com-
90 4 | | ponents. Power spectra are
) ] ) used to: (a) identify which
80 4 4 i frequency components are
i ] i present (frequency:
70 _ _ 1/wavelength); and
j ] ) (b) determine their relative
60 - ] - amplitudes. In this case
. 1 - two sine waves of equal
50 . - amplitude, but different
1 1 . wavelengths, have been
40 . . added to produce the time
T 1 1 series labelled “Sum”.
30+ . . The corresponding power
1 1 spectrum has peaks that
occur at frequencies
corresponding to the
component wavelengths.
The peaks are equal in
height because the
0.20 - 10 00 m components have the same
12 78 m amplitude. Note that it is
impossible to tell from the
spectrum whether the
components are sine or
cosine waves — in other
words the spectrum is
independent of the phase
of the components.

1000m + 278m = Sum
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o
|
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o o o
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differed. The power spectrum in Fig. 1.3 shows that the time series consists of just two
frequency components. When power spectra are generated all the phase information
is discarded. As a result, changing the relative positions or phases of the 2.78 m os-
cillations relative to the 10.0 m oscillations, and hence the shape of the time series,
would not influence the shape of the spectrum. The heights of the two spectral peaks
in Fig. 1.3 are identical because the amplitudes of the component oscillations are
identical. The larger the spectral peak, the greater the amplitude of the corresponding
wavelength of oscillation and the greater its ‘importance’ in controlling the overall
shape of the time series. The frequency of the spectral peaks can be read from the
horizontal axis and indicates, of course, that oscillations with wavelengths of 10.00 m
and 2.78 m are present in the time series.

Sinusoids with varying amplitude are said to exhiihplitude modulation or
AM . There are two types of amplitude modulation hieterodyne AM the addition
of two sinusoids with similar wavelengths creates a new single oscillation (Olsen,
1977). The new oscillation has a frequency that is the average of the frequencies of
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Fig. 1.4 Heterodyne amplitude modulation occurs when two sinusoids with similar
frequencies are added together. Here sine waves with wavelengths of 3.85 m and
2.78 m are summed. The result is an oscillation with a wavelength of 3.29 m and a
beat wavelength of 10 m. Note that the spectrum does not hapectral peak cor-
responding to the beat frequency (0.1 cycles per metre) because there are no 10 m
oscillations, just 10 m variations in amplitude. If the spectrum of this type of time series
had a lower frequency resolution than illustrated here, the two spectral peaks would
appear as one broad peak (Section 3.3.2).

the two added sinusoids. The variation in amplitude of the new oscillation is called
the beat and this has a frequency that equals the difference in the frequencies of the
added sinusoids (Taylor, 1965). For example, in Fig. 1.4 the addition of oscillations
with frequencies of 1/3.85 m and 1/2.78 m generates an oscillation with a frequency
of 1/3.22 m (i.e= (1/2.78 m+ 1/3.85 m)/2) and a beat with a wavelength of 10.00 m
(i.e. 1/10.00 m= 1/2.78 m — 1/3.85 m). Note that the spectrum reveals the presence
of the two original cycles, but no peak at the frequency of the beat frequency. This
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is because there are no oscillations with a 10 m wavelength in the record, just 10 m
variations in amplitude.

Imposed AM occurs when a large period/wavelength signal (the beat) is used to
vary the amplitude of another oscillation (the primary cycle, Olsen, 1977). In such
cases, a peak at the primary cycle frequency dominates the spectrum, butamall
bination tone peaks are generated on either side due to the imposed beat frequency
(discussed further in Section 5.2.4). The frequencies of the combination tone peaks

1000m X 2.78m = Product
01234 1 0 1 42024
100 _ 4
90 i i
80—- i i
7 ] ] Il0.00m
60 i i

50 4 4

Metres

40 - -
30+ 4 4
20 4 4 4

10 4 4

0 . 4

0.3 2.78 m

0.2

0.143.85 2.18 m

L L L L L L L
00 02 04 06 08 10 12 14
Cycles per metre

Relative power

0.0

Fig. 1.5 Imposed amplitude modulation (AM)ccurs when a separate signal is used to
vary the amplitude of a regular sinusoid. In this case the amplitude of a 2.78 m cycle
is made to vary between 1.0 and 1.5 by multiplication by a cycle with a wavelength of
10 m. The resulting time series looks very similar to that in Fig. 1.4, but the spectrum
bears the hallmark of imposed AM with combination tone peaks on either side of the
primary frequency. As for heterodyne AM there are no 10 m oscillations, so the spectrum
does not contain a spectral peak at 0.1 cycles per metre.
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1000m + 278m + 125m = Sum
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Fig. 1.6 Whenthree sine waves of different wavelengths are added together, the resulting
time series can look quite complicated. Nevertheless, as power spectra are unaffected
by phase, the three component wavelengths and their relative amplitudes are readily
determined.

correspond to the primary oscillation frequency minus the beat frequency and to the
primary oscillation frequency plus the beat frequency (Taylor, 1965). In the example
shown in Fig. 1.5, 10 m imposed AM of the 2.78 m oscillations generates sidebands at
frequencies of 1/3.85 m (i.e- 1/2.78 m — 1/10.0 m) and 1/2.18 m (i=.1/2.78 m+
1/10.0 m). As for heterodyne AM, the spectrum of animposed AM signal does not have
a peak at the beat frequency because there are no 10 m oscillations present (just 10 m
variations in amplitude). A crucial point is that power spectra reveal average powetr.
Thus, except in rare clear-cut cases (e.g. Figs. 1.4 and 1.5), power spectra cannot be
used to infer how the amplitude of an oscillation varies along the length of atime series.
Time series can look exceedingly complicated when only a few regular cycles are
added together. In Fig. 1.6 the addition of three oscillations with different amplitudes
results in a moderately complicated looking data set. The spectrum contains three
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10,00m + 278m + 125m = Sum
42024 42024 42024 42024
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Fig. 1.7 Adding three sine waves with different wavelengths aadying amplitudes
produces a time series that looks extremely complicated. It is unlikely that mere visual
inspection of the summed time series illustrated would allow one to recognize that
just three frequency components are present, or to determine the wavelengths involved.
However, as the peak height depends only on (squaraageamplitude, the spectrum

is very similar to the spectrum in Fig. 1.6.

spectral peaks, the relative peak heights indicating the average relative squared am-
plitudes of the component cycles. If the same three regular cycles have varying
amplitudes along the series, the result looks considerably more complex (Fig. 1.7),
but the corresponding spectrum is dominated by the same three peaks. Most people
would be hard-pressed to recognize the presence of just three regular components in
the time series of Fig. 1.7 merely by visual inspection. It would also be very difficult to
establish the wavelengths involved. Therefore, except with very simple or especially
characteristic data sets, it is unwise to claim the detection of regular cyclicity in a
time series by visual inspection alone or by using simple analysis of the wavelength
distribution of the oscillations (e.g. histograms of bed thickness).
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Fig. 1.8 Location map for the cyclostratigraphic records illustrated in Chapters 1 to 5.
Formn. denotes formation.

Observational time series usually consist of the addition of tens or hundreds of
regular sine and cosine components. This means that every possible regular frequency
component has a non-zero amplitude. Consequently, spectral analysis of stratigraphic
time series is used to look for spectral peaks that emerge from a background of spectral
values.

This is an appropriate point to introduce the data sets used to illustrate this book.
They are listed, according to the age of the strata from which they were obtained,
in Table 1.1. Figures 1.8 and 6.1 show where these cyclostratigraphic records were
obtained. Many of these records are based on oxygen-isotope records (see Faure,
1986 for an introduction to the determination and use&'8® and an explanation
of the delta notation). One of the records has been selected to help illustrate the var-
ious time series methods described in the book. The information comes from the
Early Jurassic hemipelagic formation called the Belemnite Marls, which is approxi-
mately 190 million years old and exposed on the coast of Dorset, England (Fig. 1.8,
Table 1.1, Weedon and Jenkyns, 1990, 1999). In the field much of this unit consists
of interbedded light-grey marls, dark-grey marls and brown-black laminated shales.
These lithologies form decimetre-scale bedding couplets that are grouped into metre-
scale bundles (Fig. 1.9). In several intervals at the base of the formation, the bedding
is barely visible. Towards the top the couplets and bundles are noticeably thinner
(Fig. 1.9).

Asfor all stratigraphic records obtained from the Jurassic system, the absolute dating
uncertainties create difficulties when assessing the duration of processes lasting less



Table 1.1.Cyclostratigraphic time series used to illustrate the book.

Period Borehole site or Number Sample Time series
(time interval) formation, location of points interval Variable description Chapter
Recent (1840-1994) Maiana Atoll, W. Pacific Ocean 928 0.166 yealOcoraL Urbanet al, 2000 6
Recent (1936-1982) Galapagos Islands, E. 183 0.5 years Ba/GaraL Shenet al,, 1992 6
Pacific Ocean
Recent (1967-1711) GISP2, Greenland 2047 0.125 yeaid®O,ce Section 6.2 6
Recent (1987-818) GISP2, Greenland 1170 1.0 year 880 Section 6.2 6
Recent (0.0-10.0 ka BP) GISP2, Greenland 503 20 yearss80,ce Section 6.2 6
Late Pleistocene—-Recent  GISP2, Greenland 405 200 years §'80,ce Section 6.2 6
(0-80.8 ka BP)
Late Pleistocene—Recent  ODP 980, North Atlantic 928 Variable  §80pg McManuset al., 1999 6
(0-330 ka BP)
Late Pleistocene—Recent  ODP 722, N.W. Indian Ocean 147 Variable Ba/Al, Ti/Al Weedon and Shimmield, 5
(0-370 ka BP) 1991
Late Miocene—Recent ODP 677 and ODP 846, 2001 3000 years 5'80ge Shackletoret al.,, 1990, 6
(0-6 Ma BP) E. Pacific Ocean 1995b
Early Miocene Marine Molasse, Auribeau, S. France 154 Bundle thickness Tidal bundle thickness Archer, 1996 6
Late Jurassic Kimmeridge Clay Formation, 360 0.05m Magnetic susceptibility Morgans-Betlal., 2001; 5
S. England Weedoret al, 1999
Late Jurassic Kimmeridge Clay Formation, 117 0.1524 m Photoelectric factor Gallois, 2000; 5
S. England Morgans-Bellet al., 2001
Late Jurassic Kimmeridge Clay Formation, 90 0.2m %TOC Morgans-Bedit al., 2001; 5
S. England Weedoret al, 1999
Early Jurassic Morbio Formation, S. Switzerland 1024 0.01m Rock type code Weedon, 1989 3
Early Jurassic Belemnite Marls, S. England 798 0.03m %Caea0C Weedon and Jenkyns, 1999 1-6
Late Carboniferous Abbott Formation, S. lllinois, USA 208 Bed thickness Tidal bed thickness Archer, 1996 6
Early Carboniferous Limestone Coal Group, C. Scotland 5236 0.01m Rock type code Weedon and Read, 1995 5

Abbreviations380pg, §180 in planktonic foraminiferas'®Ogr, 180 in benthic foraminifera; ODP, Ocean Drilling Program; % T&{ercentage total organic carbon;
ka, thousands of years; Ma, millions of years; BP, before present. Figures 1.8 and 6.1 provide location maps for these records.
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Fig. 1.9 Photograph of the Belemnite Marls as exposed below Stonebarrow near
Charmouth in Dorset, England. The whole formation is close to 24 m thick. The ma-
jority of the formation consists of beds of light-grey marl alternating with dark-grey
marl and brown-black laminated shales. The alternations form couplets that are grouped
into bundles. Both couplets and bundles become much thinner towards the top of the
formation.

than about 10 million years (Gradsteital., 1994). Nevertheless, itis clear from time-
series analysis that the decimetre-scale bedding couplets relate to the 20,000 orbital-
precession cycle (Weedon and Jenkyns, 1999). Samples were collected throughout
the Belemnite Marls at fixed 3-cm intervals and analysed for weight percent calcium
carbonate and total organic carbon (or TOC, Fig. 1.10). Weedon and Jenkyns (1999)
give instructions for obtaining a listing of these data. The results show that the light-
grey marls have higher carbonate contents and less organic carbon than the dark-grey
marls and laminated shales. Additionally, in the visually almost homogeneous interval
towards the base (bed 110), there are the same types of compositional variations found
elsewhere.

In Fig. 1.11 part of the time series of weight percent Cg@©Om the Belemnite
Marls is illustrated with the corresponding power spectrum. Although a large num-
ber of frequency components appear, the spectrum of the Belemnite Marls carbonate
contents is clearly dominated by three main spectral peaks which emerge from the
spectral background. These large spectral peaks are described as relating to regular
sedimentary cycles, even though mathematically all the spectral values relate to reg-
ular components. Thus it is the geological interpretation of the spectrum that leads
to the data being regarded as composed of a three-component regular cyclic ‘signal’
plus the irregular ‘noise’ accounting for the spectral background. The spectral peak
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Fig. 1.10 Calcium carbonate (CaG{and total organic carbon (TOC) time series from

the whole of the Belemnite Marls. The top and base of the formation are marked by
thin early diagenetic limestones that are associated with stratigraphic gaps (Weedon and
Jenkyns, 1999). The formation covers the first two ammonite zones of the Pliensbachian
Stage (Lower Jurassic). Bed numbers follow Latgl. (1928). Note the persistence of
couplet-like carbonate and organic carbon oscillations throughout bed 110, even though
in the field the bedding is barely visible (Fig. 1.9).
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Fig. 1.11 A time series of calcium carbonate contents from the lower two-thirds of
the Belemnite Marls. In real data there is some variation in the measured variable at
every scale or wavelength. In general, lower frequency variations have a larger average
amplitude than higher frequency variations. This produces a sloping continuum in the
spectrum that rises towards the lowest frequency end. In the Belemnite Marls there
are three main scales of variation in carbonate contents (Weedon and Jenkyns, 1999)
that account for the labelled spectral peaks emerging from the sloping background
continuum. The dashed lines indicate confidence levels (CL) and are used to distinguish
peaks from the spectral background (Section 3.5).

For completeness the following describes the methods used to generate this spectrum
(see Chapter 3 for explanations): (a) linear detrending of 548 data points, (b) zero-
padding to 1024 points, (c) multi-taper spectral estimation using six data tapers. The
95% and 99% confidence levels (e.g. 99% CL) are used to identify those spectral peaks
that cannot be attributed to the background noise.

labelled with a wavelength of 0.37 m relates to the bedding couplets and the peak
labelled 3.07 m relates to the metre-scale bundles of couplets. In this case the noise in
the time series can be regarded as the product of irregular oscillations in the environ-
ment plus measurement errors, which together partly explain the continuous spectral
background.

Details of the methods needed to generate power spectra are given in Chapter 3.
Many other methods of time-series analysis are available and some of the standard
procedures are described in Chapter 4. The three most important methods are used
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to: (a) isolate regular cycles from the time series (filtering); (b) examine variations

in cycle amplitude (amplitude demodulation); and (c) study the phase and amplitude
relationships of pairs of variables obtained simultaneously from the same samples or
time intervals (i.e. cross-spectral analysis). Chapter 5 is concerned with distortions of
these environmental signals as recorded stratigraphically, as well as practical consid-
erations in conducting time-series analyses of real data. Chapter 6 discusses the many
environmental origins for the regular cycles that have been observed in stratigraphic
records (from tidal to Milankovitch cycles).

In the context of cyclostratigraphic data sets, spectral analysis is usually the first
procedure used, because it allows the detection of regular cyclicity and determination
of wavelengths and average amplitudes. However, before the difficulties of generating
and interpreting power spectra can be considered, it is essential that one is aware of
the many issues concerning the construction of time series (Chapter 2).

1.4  Chapter overview

B Time-series analysis provides procedures for examining quantitative records of
environmental variability. It was widely adopted in cyclostratigraphic studies
following the vindication of the orbital-climatic theory (Milankovitch theory) in
the early 1980s.

B Spectral analysis allows the detection of multiple regular cycles in a time series.
Each regular component is characterized in terms of its frequeadyeriod
or 1/wavelength) andveragepower & squared average amplitude).

B Regular amplitude modulation in a time series doetggenerate a spectral peak
at the modulation frequency.





